
Object-Oriented Programming and Verification in
Spec#:

A Course Proposal for ECI 2007

Mike Barnett and Shaz Qadeer
Microsoft Research

{mbarnett,qadeer}@microsoft.com

0 Description

The Spec# programming system is a new attempt at a more cost effective way to
produce high-quality software. For a programming system tobe adopted widely, it
must provide a complete infrastructure, including libraries, tools, design support, in-
tegrated editing capabilities, and most importantly be easily usable by many program-
mers. Therefore, our approach is to integrate into an existing industrial-strength plat-
form, the .NET Framework. The Spec# programming system rests on the Spec# pro-
gramming language, which is an extension of the existing object-oriented .NET pro-
gramming language C#. The extensions over C# consist of specification constructs
like pre- and postconditions, non-null types, and some facilities for higher-level data
abstractions. In addition, we enrich C# programming constructs whenever doing so
supports the Spec# programming methodology. We allow interoperability with exist-
ing .NET code and libraries, but we guarantee soundness onlyas long as the source
comes from Spec#. The specifications also become part of program execution, where
they are checked dynamically. The Spec# programming systemconsists not only of a
language and compiler, but also an automatic program verifier which checks specifica-
tions statically. The Spec# system is fully integrated intothe Microsoft Visual Studio
environment.

The main contributions of the Spec# programming system are

– a small extension to an already popular language,
– a sound programming methodology that permits specificationand reasoning about

object invariants even in the presence of callbacks,
– tools that enforce the methodology, ranging from easily usable dynamic checking

to high-assurance automatic static verification, and
– a smooth adoption path whereby programmers can gradually start taking advantage

of the benefits of specification.

In this course, through hands-on use of the Spec# programming system we present
the theory and practice for the verification of object-oriented programs.

Spec# is currently under development at Microsoft Research, Redmond. Much more
detailed descriptions of Spec# can be found in the list of references.



2

1 Purpose and Scope

This course addresses the issue of automatically verifyingobject-oriented programs. It
introduces a new programming system (language and tools) for the .NET Framework
that allows specifications to be connected directly to the source language. The language
allows the concise recording of detailed design decisions within the source code while
the tools enforce these decisions either at compile-time, run-time, or both.

As well as being a presentation of state-of-the-art research, the course is meant to
provide an introduction sufficient for attendees to begin using Spec#, either directly for
programming, for teaching, or as a research platform. Spec#is freely available for non-
commerical purposes fromhttp://research.microsoft.com/specsharp.

2 Aims and Objectives

After attending this course, participants should have an understanding of the semantics
of object-oriented programs. They will understand how program verification is per-
formed, its inherent tradeoffs, and how modern SMT solvers are implemented. They
will understand the design space for solutions to the modular static verification of
object-oriented programs. They will be introduced to design-by-contract method spec-
ifications and object invariants. They should be able to effectively write specifications
for their programs and understand the feedback from the automatic static verification in
order to conform to the Spec# programming methodology.

3 Relevance

Object-oriented programming has now become the standard programming metaphor.
Despite its advantages, the dynamic nature of most object-oriented systems (late bind-
ing, dynamic method dispatch, reflection, etc.) has often introduced additional complex-
ity. Various design methodologies and patterns have been developed to help program-
mers, but without automatic tool support, nothing preventsthe introduction of deep,
difficult to find and fix errors.

Analysis tools that provide programmer support must be modular. They must also
be integrated into the development process, which entails their being integrated into
the development environment. Spec# is an attempt to providespecification and analysis
for industrial-strength software systems. At the same time, it is a leading-edge research
vehicle, especially in regard to object invariants.

4 Audience

The intended audience should be familiar with procedural programming.



3

5 Syllabus

5.1 Introduction to Spec# Programming

First Lecture Motivation and demo. Undecidability of verification. Soundness and
completeness. Automation versus interactive proving. Whole program versus modular
analysis. Bug finding versus verification. Precision.

Second Lecture Basics of procedural semantics: abstract language and wp. Refine-
ment. Loops.

5.2 Semantics of Object-Oriented Programs

First Lecture Object-oriented semantics. Memory model. Correctness.

Second Lecture Connection to Spec#. Pre- and postconditions. Non-null type system.
Data-flow static analysis.

5.3 Object Invariants

First Lecture Object invariants: single and composite objects. Ownership systems.
Abstraction.

Second Lecture Verification condition generation.

5.4 SMT Solvers

First Lecture Nelson-Oppen.

Second Lecture Theories: congruence closure, SAT.

5.5 SMT Solvers

First Lecture Theories: arithmetic, quantification with triggers.

Second Lecture Summary, discussion, questions.

6 Evaluation

Students will be given a take home exam that will then be sent to the instructors after
the course has finished. The exam will include problems to be solved using the Spec#
programming system.



4

7 Instructors

Mike Barnett has been with the Microsoft Corporation since July 1995. He first was a
member of the Natural Language Processing Group in Microsoft Research, moving
to the Foundations of Software Engineering group in the fallof 1999. He is now
a member of the Programming Languages and Methods group. Before coming to
Microsoft, Mike had been an assistant professor of ComputerScience at the Uni-
versity of Idaho for three years. He received his PhD in Computer Science from
the University of Texas at Austin in 1992. He is currently working on the Spec#
Programming System.

Shaz Qadeer is a member of the Software Reliability Research group at Microsoft
Research. His work aims to improve software reliability by providing programmers
with automated tools to analyze their programs. He is interested in a variety of
program analysis techniques, such as model checking, automated theorem proving,
type systems, and run-time verification. Most of his work hasfocused on applying
these techniques to analysis of concurrent software.

References

0. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants.Journal of Object Technology,
3(6):27–56, 2004.

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. TheSpec# programming system:
An overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian
Muntean, editors,CASSIS 2004, Construction and Analysis of Safe, Secure and Interoperable
Smart devices, volume 3362 ofLecture Notes in Computer Science, pages 49–69. Springer,
2005.

2. Mike Barnett and David A. Naumann. Friends need a bit more:Maintaining invariants over
shared state. InSeventh International Conference on Mathematics of Program Construction
(MPC 2004), Lecture Notes in Computer Science, pages 54–84. Springer-Verlag, July 2004.

3. Bart Jacobs, K. Rustan M. Leino, and Wolfram Schulte. Verification of multithreaded object-
oriented programs with invariants. InSpecification and Verification of Component-Based
Systems. Computer Science Department, Iowa State University, 2004. TR #04-09.

4. K. Rustan M. Leino and Peter Müller. Modular verificationof global module invariants in
object-oriented programs. Technical Report 459, ETH Zürich, 2004.

5. K. Rustan M. Leino and Peter Müller. Object invariants indynamic contexts. In Martin
Odersky, editor,European Conference on Object-Oriented Programming (ECOOP), volume
3086 ofLecture Notes in Computer Science, pages 491–516. Springer-Verlag, June 2004.

6. K. Rustan M. Leino and Wolfram Schulte. Exception safety for C#. In Jorge R. Cuellar and
Zhiming Liu, editors,SEFM 2004—Second International Conference on Software Engineer-
ing and Formal Methods, pages 218–227. IEEE, September 2004.

7. David A. Naumann and Mike Barnett. Towards imperative modules: Reasoning about in-
variants and sharing of mutable state. InLogic in Computer Science (LICS), pages 313–323.
IEEE, 2004.


