Object-Oriented Programming and Verification in
Spec#:
A Course Proposal for ECI 2007

Mike Barnett and Shaz Qadeer
Microsoft Research
{mbar net t, qadeer }@ri crosoft.com

0 Description

The Spec# programming system is a new attempt at a more destief way to
produce high-quality software. For a programming systenbgcadopted widely, it
must provide a complete infrastructure, including libearitools, design support, in-
tegrated editing capabilities, and most importantly belyasable by many program-
mers. Therefore, our approach is to integrate into an egjstidustrial-strength plat-
form, the .NET Framework. The Spec# programming systens @stthe Spec# pro-
gramming language, which is an extension of the existingabjriented .NET pro-
gramming language C#. The extensions over C# consist ofifgadion constructs
like pre- and postconditions, non-null types, and somdifigs for higher-level data
abstractions. In addition, we enrich C# programming caassr whenever doing so
supports the Spec# programming methodology. We allow dpenability with exist-
ing .NET code and libraries, but we guarantee soundnessasnlgng as the source
comes from Spec#. The specifications also become part ofgarogxecution, where
they are checked dynamically. The Spec# programming systersists not only of a
language and compiler, but also an automatic program vewnfiech checks specifica-
tions statically. The Spec# system is fully integrated ith® Microsoft Visual Studio
environment.
The main contributions of the Spec# programming system are

— a small extension to an already popular language,

— a sound programming methodology that permits specificaimhreasoning about
object invariants even in the presence of callbacks,

— tools that enforce the methodology, ranging from easilyblesdynamic checking
to high-assurance automatic static verification, and

— a smooth adoption path whereby programmers can graduaittytaking advantage
of the benefits of specification.

In this course, through hands-on use of the Spec# progragsystem we present
the theory and practice for the verification of object-otéshprograms.

Spect# is currently under development at Microsoft Rese&etimond. Much more
detailed descriptions of Spec# can be found in the list afrexices.

2

1 Purpose and Scope

This course addresses the issue of automatically verifyijgct-oriented programs. It
introduces a new programming system (language and toal$héo.NET Framework
that allows specifications to be connected directly to thesmlanguage. The language
allows the concise recording of detailed design decisiatisimthe source code while
the tools enforce these decisions either at compile-tiovefime, or both.

As well as being a presentation of state-of-the-art resedine course is meant to
provide an introduction sufficient for attendees to begingiSpec#, either directly for
programming, for teaching, or as a research platform. Sizdtéely available for non-
commerical purposes frotnt t p: / / r esear ch. m crosoft. com specshar p.

2 Aims and Objectives

After attending this course, participants should have atetstanding of the semantics
of object-oriented programs. They will understand how paog verification is per-
formed, its inherent tradeoffs, and how modern SMT solvegsimplemented. They
will understand the design space for solutions to the madstaic verification of
object-oriented programs. They will be introduced to dedig-contract method spec-
ifications and object invariants. They should be able toctiffely write specifications
for their programs and understand the feedback from thevaatio static verification in
order to conform to the Spec# programming methodology.

3 Relevance

Object-oriented programming has now become the standagtamming metaphor.
Despite its advantages, the dynamic nature of most objgetted systems (late bind-
ing, dynamic method dispatch, reflection, etc.) has ofteénduced additional complex-
ity. Various design methodologies and patterns have beesi@zed to help program-
mers, but without automatic tool support, nothing prevehésintroduction of deep,
difficult to find and fix errors.

Analysis tools that provide programmer support must be Hesdlihey must also
be integrated into the development process, which entadls being integrated into
the development environment. Spec# is an attempt to prepideification and analysis
for industrial-strength software systems. At the same titnig a leading-edge research
vehicle, especially in regard to object invariants.

4 Audience

The intended audience should be familiar with procedum@@mming.

5 Syllabus

5.1 Introduction to Spec# Programming

First Lecture Motivation and demo. Undecidability of verification. Soumess and
completeness. Automation versus interactive proving. M/poogram versus modular
analysis. Bug finding versus verification. Precision.

Second Lecture Basics of procedural semantics: abstract language and afmeR
ment. Loops.

5.2 Semantics of Object-Oriented Programs

First Lecture Object-oriented semantics. Memory model. Correctness.

Second Lecture Connection to Spec#. Pre- and postconditions. Non-nud system.
Data-flow static analysis.

5.3 Object Invariants

First Lecture Obiject invariants: single and composite objects. Ownprskstems.
Abstraction.

Second Lecture Verification condition generation.

5.4 SMT Solvers

First Lecture Nelson-Oppen.
Second Lecture Theories: congruence closure, SAT.

5.5 SMT Solvers

First Lecture Theories: arithmetic, quantification with triggers.

Second Lecture Summary, discussion, questions.

6 Evaluation

Students will be given a take home exam that will then be sethd instructors after
the course has finished. The exam will include problems tabesd using the Spec#
programming system.

4

7 Instructors

Mike Barnett has been with the Microsoft Corporation since July 1995. He¢fas a
member of the Natural Language Processing Group in MictéXgearch, moving
to the Foundations of Software Engineering group in thedall999. He is now
a member of the Programming Languages and Methods groupreBedbming to
Microsoft, Mike had been an assistant professor of Compstéznce at the Uni-
versity of Idaho for three years. He received his PhD in Commp8cience from
the University of Texas at Austin in 1992. He is currently Wiag on the Spec#
Programming System.

Shaz Qadeeris a member of the Software Reliability Research group atrdicft
Research. His work aims to improve software reliability bg\pding programmers
with automated tools to analyze their programs. He is isteckin a variety of
program analysis techniques, such as model checking, atgdrtheorem proving,
type systems, and run-time verification. Most of his work fuesised on applying
these techniques to analysis of concurrent software.

References

0. Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Radth Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariantslournal of Object Technology
3(6):27-56, 2004.

1. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. T3@ec# programming system:
An overview. In Gilles Barthe, Lilian Burdy, Marieke Huismalean-Louis Lanet, and Traian
Muntean, editorsCASSIS 2004, Construction and Analysis of Safe, Securenéerdperable
Smart devicesvolume 3362 ofLecture Notes in Computer Sciengmges 49-69. Springer,
2005.

2. Mike Barnett and David A. Naumann. Friends need a bit migl@ntaining invariants over
shared state. I8eventh International Conference on Mathematics of Prog@onstruction
(MPC 2004) Lecture Notes in Computer Science, pages 54—84. Spriveytag, July 2004.

3. Bart Jacobs, K. Rustan M. Leino, and Wolfram Schulte. figgriion of multithreaded object-
oriented programs with invariants. Bpecification and Verification of Component-Based
SystemsComputer Science Department, lowa State University, 2064#04-09.

4. K. Rustan M. Leino and Peter Muller. Modular verificatiohglobal module invariants in
object-oriented programs. Technical Report 459, ETH&ur2004.

5. K. Rustan M. Leino and Peter Muller. Object invariantsdynamic contexts. In Martin
Odersky, editorEuropean Conference on Object-Oriented Programming (EED&olume
3086 ofLecture Notes in Computer Scienpages 491-516. Springer-Verlag, June 2004.

6. K. Rustan M. Leino and Wolfram Schulte. Exception safetyG#. In Jorge R. Cuellar and
Zhiming Liu, editors, SEFM 2004—Second International Conference on SoftwarinEeg
ing and Formal Methodsages 218-227. IEEE, September 2004.

7. David A. Naumann and Mike Barnett. Towards imperative ulest Reasoning about in-
variants and sharing of mutable state.Lbgic in Computer Science (LIC$)ages 313-323.
IEEE, 2004.

